skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rajapakse, N"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Pt-Te compositional phase diagram consists of at least three different compositional line phases (PtTe2, Pt3Te4, and Pt2Te2) that can be described as layered van der Waals materials. This presents challenges in controlling the composition of ultrathin Pt-telluride 2D materials by physical vapor deposition methods. Here we show by temperature programmed synchrotron photoemission spectroscopy that the different phases have varying thermal stability in vacuum. This enables the synthesis of these materials by preparation of PtTe2 films at low growth temperatures and subsequent vacuum annealing to ~ 350 ˚C for Pt3Te4, or ~400 ˚C for Pt2Te2. Such prepared phases are characterized by high resolution core level spectroscopy to provide reference spectra for these materials. Moreover, the chemical stability of these materials was tested by exposure to oxygen and air. Even after prolonged air exposure only the surface Te layer was modified by oxygen chemical bonds that caused a 3-eV shift to higher binding energy of the Te-3d core levels. However, these oxygen species could be desorbed by vacuum annealing at 280 ˚C and pristine Pt-telluride samples can be re-established. This shows the excellent chemical stability of these materials, important for practical applications. 
    more » « less
  2. Background. Rapid blood culture diagnostics are of unclear benefit for patients with gram-negative bacilli (GNB) bloodstream infections (BSIs). We conducted a multicenter, randomized, controlled trial comparing outcomes of patients with GNB BSIs who had blood culture testing with standard-of-care (SOC) culture and antimicrobial susceptibility testing (AST) vs rapid organism identification (ID) and phenotypic AST using the Accelerate Pheno System (RAPID). Methods. Patients with positive blood cultures with Gram stains showing GNB were randomized to SOC testing with antimicrobial stewardship (AS) review or RAPID with AS. The primary outcome was time to first antibiotic modification within 72 hours of randomization. Results. Of 500 randomized patients, 448 were included (226 SOC, 222 RAPID). Mean (standard deviation) time to results was faster for RAPID than SOC for organism ID (2.7 [1.2] vs 11.7 [10.5] hours; P < .001) and AST (13.5 [56] vs 44.9 [12.1] hours; P < .001). Median (interquartile range [IQR]) time to first antibiotic modification was faster in the RAPID arm vs the SOC arm for overall antibiotics (8.6 [2.6–27.6] vs 14.9 [3.3–41.1] hours; P = .02) and gram-negative antibiotics (17.3 [4.9–72] vs 42.1 [10.1–72] hours; P < .001). Median (IQR) time to antibiotic escalation was faster in the RAPID arm vs the SOC arm for antimicrobial-resistant BSIs (18.4 [5.8–72] vs 61.7 [30.4–72] hours; P = .01). There were no differences between the arms in patient outcomes. Conclusions. Rapid organism ID and phenotypic AST led to faster changes in antibiotic therapy for gram-negative BSIs. 
    more » « less